Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico

U

F
I

W

A
F

C

S

G

2011

S

W

C

S

G

!

O

:

"#

# $

C &O

:

"#

#

2011

%

& '

Catalogação na fonte
Universidade Federal de Alagoas
Biblioteca Central
Divisão de Tratamento Técnico
Bibliotecária Responsável: Helena Cristina Pimentel do Vale
S586c

Silva, Willamys Cristiano Soares.
Geração e Caracterização de feixes possuindo momento angular
orbital / Willamys Cristiano Soares Silva. – 2011.
69 f.: il.
Orientador: Jandir Muguel Hickmann.
Co-Orientador: Dilson Pereira Caetano.
Tese (doutorado em Física da Matéria Condensada) – Universidade
Federal de Alagoas. Instituto de Física. Maceió, 2011.
Bibliografia. f. 67-69.
1. Difração. 2. Feixes Laguerre-gauss. 3. Feixes Bessel. 4. Momento
Angular orbital. I. Título.
CDU: 535.4





!
# $
% #

+

'

& (

#

&

,-

. /



)

*

( 2 $
3

4
# 5


7

*

*

#

$





&

$



• 1

"

0

3*
(5

!

6( $

7

# $
8

* *
9

,
#

#
-

*
*,

";

8

7

,

,#

9

)

:
*

8
*

7

8

9 '

,
8

#

* :

8

*

( 8

8

#

l

,
#

,

-

";

( 8

)

5*
9

4

$

#

<

<

< $

#

*

<

$

$
.

$

$
#

)+
)

#

< $

-

=

*

$
*

l <
$

<

$ #

8

$
=

$

$

.

$

$
-

=

";

=
$

=

$ #
#

#
$

$

";

#+

"

+*
$

>

$

$

)

#

.#

?@

*

A p = 0 #A p = 1

p

Ap=2

??

l = 1 #A l = 2

Al=3

";
Ap=3

?B

";

z=0

e) HG

> a) HG

?F

9

C@

8 )

A l = 1 #A l = 2

Al=4

C@

C?
*

-

";

C?

9
A l = ±1 #A l = ±2
8

CC

c)
?D

8 )

8

b) HG

f ) HG

?E
Al=3

A

p=0

?B
";

d) HG

l =2

Al=4

?C
HG

z = 0

-

";

A l = ±3

CF

Al=1

#A l = 2

*

CB

CE

8
)

CG

a) l = 1

CF

H( 8
CD

b) l = 4
γ = 0 a)

CG

)

l=1

b)

EI

l=4

8 )

CB

E@
8 -

. *

";
> A l = 1 #A l = 2

CJ

Al=3

E?

8 )
"

. *

> A l = 1 #A l = 2

CD

8 A l = 1 #A l = 0

C @I

A l = −1

8 -

A l = 2 #A l = 3

Al=4

A l = 3 E?

";
EC
";
EE

C @@

#

4

EF

C @?

4
8 #A l = 4

";

N =5

9

>

A l = −1

Al=9

C @C

4
8 #A l = 1

";

N =6

9

>

A l = −5

Al=7

E@

(
#

EG

$

EB

*,

.

#

*

"
F@

E?

:

(

$

8

#

-

";

( EC 7
9

,

*

$

A l = 1 #A l = 2
.#
EC

*
#

:

A l = 3

A l = 4

# $

l+1

A'#

.

F?

#A - $

"

#

8
#

0

FC

EE

9
A

$

.

:

9

#A

A

#

0
FF

l=3

EF

8 -

";

l=3
FG

EG '
(

$

8

-

";

#

,

( E?

3
EB

:

(
A l = −1 #A l = −2

(

$

"

8

)

EC .

#

:

A l = −3

A l = −4

,
#

3

# "
( E?

(
A l = 1 #A l = 2

FB

EC .

Al=3

Al=4

:
FJ

EJ

:

(
#

$

8

.

l = 10 #A l = 11

-

";

:

A l = 12

A

A l = 13 . / 0

#

*
GI

ED

!

E @I

#

8

M

#

A l = 0 #A l = 1
E @@ 2

G@
8

-

Al=2

8

";
G?

#
8

E @? 2

$

M

-

";

8

A l = 1 #A l = 2

Al=3

A l = 4 GC

#
8

-

";

A l = −2

#A l = −3

GC

! "

#

# $

%

&

'

?@ 4

@G

?? '

:

8<

,

?C

5

#

?C@

9

@D

#

?C?

( 8

-

?CC

( 8

)

?@

";

?F
CI

?E

C?

( "

!

&

!

) *

+

(,

C@ 4

CE

C? ;

( 8

-

CC ;

( 8

)

CE

9

";

CF
CB

( 8

.#

CF

E@
EB

, -

!

+ .

) *

/

,0

E@ 4

ED

E?

1

@B

#

FI

E C '8

GI

EE

GE
!

'1

) 2

'0

/

! "

.

9

$

*

,

5

& !

,

8

#
,

* *"

XX

8

8<

5*

"

8

K

"

,
L@M

.

9
9

3
,

5

.

5
$ 3

N

N

9

9

"$ 3

"

'

9
#

*

O

3

N

,

9

#
,

9

#

,

0
*

"

'

@DID

5
8

+

6

*

*
L?M

8

,
5
9

9

#

@DCG ) $ LCM #
8

9 '

$ 3

9
λ,
*

* 9
8

8
#

@?

*

9

λ/2π
)

*

9
λ/2

/

! "

(
#

9

"$ 3

N
P

9

8

#

N

*

5
'

@DD?

#

P

#

8

#

9

φ,

exp(ilφ)

9

'
5

l,

Q

$

,

8

9
$

9

,

LEM

8

!
8

*

$

,

,

7

LF GM

*

:

LBM

9,

,

#

#

LJM
8

$

9

9

8 LD @IM 6

5
";

#
'

:

5*

-

8

";

LEM

/

"

8

.

9

9
8

*
3

"

9
";

R

+

#

8
-

8

*

9,

8

,

!

'
*

*
8 L@@M

8

!

8
*
:

/

! "

,
8

$

L@?M

*

L@CM

*

N

* *

'

@DJB

#

8

5

$ !

*

$

3

#

8

8 )

N

6

8

L@EM

/
*

:

,

!
)

8

:

*

*
8 )

,

9

!
5

0

L@FM

,

8

0

,

8 )
)

*

9

θ
#

9

8

0
,

#

5*

7

*

'

0

8

5

8
#

L@GM '

,
5*

"

:
8

*

)
8

)
5

)

*
L@BS@DM

.

,

8

,
.

9

#

*9
8

U

T

9

#

"

9
#

5*

#

*
9

R

L?IM

*,

8

L?@S?CM

9

8
L?EM

5

*,
* *

/

! "

1
# $

5

7

9

1
*

8

-

";

8

5

7

5

)

#
7

5

,

2

8

#

#
5

$

,

9

#,

8

,

9

5

-

$

";

*

3

8

3

)

/

"

5

,
#

8

9

8

.

,

5

8

8
#

3 4
-

0

"
";

8

)

3

#
,

#
$

8

8
,

* *

"
# P

8
#
7

5

4

5

9

#/ $

%

#/

&

!

7

5

8

9 .

9

*

9

>
H

#

#
,

*

Vl ,

Q

)

3

8
#

#

.

A
#

A O

exp(ilφ)
93*

8

V 8 5

,

l
9

5

#
'8

8

8

-

";

,

8

8
5

,

$

9

5
4

:
,

7

5

#!

*

9

#

9
9

8
#

:

9
#

8

*

-

#

8

*

l

l

";
5

5
5

8

8
exp(ilφ)

6

3

8<

,

:
$

8

)

L@E @FM
@G

8
$

9 '

#/# 34

#/#

5

$ *

34

+

5

6

7

$ *

+

6
7

0

3

:

8<

,

L@M '

:

!

*
4

6

:

,
:

,

8<

*3

>


∂t

V? @A

= −

∇×

=



=

ρ
ε

V? CA



= 0,

V? EA


∂t



,

V? ?A

,

ρ

*
*

:

,

:
,

,

#

*
!

*
*

8

8<

:

*

6
& #

φ
*

,
>

=∇×
6

,

9

*

,

*

*3

*

*

,

ε

,

7 &

∇×

*

#

,

V? @A

V? FA

.

>

#/# 34

5

$ *

+

+

∇×
.


∂t

6

8

V? GA

= 0.

V? GA
>

φ


.
∂t

= − ∇φ −
& #

:

V? FA
1

6

V? BA

∇×∇×

∇×∇×
−∇
#

V? ?A




∂t

= ∇(∇

∇φ+

>


∂t

V? BA

)+ε

>



∂φ
=
∂t

.

8

>

V? CA

ε ∇ −∇φ −


∂t

V? JA

= .

#

)−∇


+ ∇(∇
∂t



V? BA

V? DA

= ρ,

V? @IA

ρ
.
ε

V? @@A

>
∇ φ+
9


(∇
∂t

:

)=−
8<

N

:

V? DA

V? @@A

"

:
#

-

9

>



c=


ǫ

, *

9

+

*3

1 ∂φ
= 0,
c ∂t

V? @?A

:

V? DA V? @@A

#/( $

9

&

0

ρ
1∂ φ
=−
c ∂ t
ǫ

V? @CA

>
∇ φ−

:

V? @CA
:

#/(

1∂
c ∂t





=−

V? @EA

.

V? @EA !

V? @?A

*

N

:

8<

$

!

*3

9

&

7

,
#

"
:

5

#
7 *3

,

,

,

L@M

! >

×



V? @FA

.

3

m

*,

*

>
m=

.

×

= ε ×( ×

, #
6

V? @GA

).

N

9

*

×

=

× (∇ ×
×

× =(

)=
j

* >

(Ej ∇Aj ) − (

) −(

)

j

∇) ,

V? @BA

#/( $
x, y

9
*

z

&

& #

V? @BA

= ε ×

m

= ε
j

6

9

=

∇)

j

:

V? @GA

(Ej ∇Aj ) − (

j

#

>

∇)

[Ej ( × ∇)Aj ] − ×(
*

×(

#:

V? @JA

.

∇)

>

[∇j (Ej ×

)] − ×

(

∇) =

(∇

)+

×(

V? @DA

∇)

V? ?IA

.

8<

*

= 0



V? @DA ,
8

m

>


j

'

#

[Ej ( × ∇)Aj ] −
#

[∇j (Ej ×

j

:

V? @DA

V? ?@A

)] + ×
V? ?IA

V? @JA .

, #
! >

m


j

[Ej ( × ∇)Aj ] dv −

j

[∇j (Ej ×

)] dv+

*

#

[∇j (Ej ×
&

( ×

,

)] dv =
s

Ej ( ×

. V? ??A

)dv

>

V? ?CA

)dsj .

r →∞

5

#/(/ $

#
,

,

(

,

>

= ε

m

=

m

= ε
= ε
#

)dv + ε

[Ej ( × ∇)Aj ] dv

j

V? ?EA

+

( ×

5

)dv

[Ej ( × ∇)Aj ] dv

j

!

( ×

*
V? ?EA ,

5
*

,

3
3

#

9

9

!

,
9

$

×▽
0

O 0

3

#

5

9
#

,

#/(/
'

$

@DD?

#

LEM

9

8
#

exp(ilφ)
l,
8
*

9

5

l

9
3

$

9

!

>

V? ?FA

( ,t) = u( ) exp [i(kz − ωt)] x,
,

*

3

9

8 x k=

π
λ

,

*

λ,

#/(/ $

##
8 ω,

*

P

#

u( ) ,
8

8

8

∂u
∂z

8

,

,

8

∂ u
∂ z

k ∂u
∂z
8

ku

,

>
∇t u + 2ik
∇t =


∂x

+

,


∂y

-

∂u
= 0,
∂z

V? ?GA

*
,

*
,

1.2
*3

#
8

#V

A

,

9N

#

#,

P

>
∂u ( )
= 0,
∂x

= 0 =⇒



9

"

V? ?BA

$

V? BA

,

N 8
=−


∂t

V? ?JA

W

V? @GA

W

8

*

×

! >
Re ( ×
*



)=

1
(
2



×

V? ?FA

+

×
8



).

V? ?DA

:

,

#/(/ $

#(

,

>

= iωu exp [i (kz − ωt)] x
∂t
∂u
∂u
= ∇× =
+ iku exp [i (kz − ωt)] y −
exp [i (kz − ωt)] z.
∂z
∂y

V? CIA

= −



∂u
∂x

= −iωu⋆

×

V? C@A

∂u
∂u
y+
z + ωk |u| z,
∂y
∂z

V? C?A

>

=0



×

V? CCA

= −iωu⋆ ∇u + ωk |u| z,

*
×



V? CEA

= iωu∇u⋆ + ωk |u| z.

,
,

,

"

>

= Re [ε



×

7

]=

ε
[
2



×

+

×



]=

iωε
(u∇u⋆ − u⋆ ∇u) + ε ωk |u| z.
2
V? CFA

,
8

*

#

8 u

!

>

V? CGA

u(r, φ, z) = u (r, z) exp(ilφ),

8
7

#
*

V? CGA *
8

8

,

5
V? ?BA

8
9

l,

9

,

8

- 8
:

5

8<

L?GM
#

8
8

#/(/ $
6

#,

9

8

8

9

∂u
∂z

,

ku

, 8

=

iωε
2

>

*

r φ z

∂u⋆
∂u
− u⋆
∂r
∂r

u

r+

lε ω
|u | φ + ε ωk |u | z,
r

3

,

5
*

!

+

V? CBA

7
,

*

c

"

$

r

3

8

φ,

3*

#

"

z
z

,

=−

>

iωε
lε ω
z |u | r +
r
2

u

4

∂u⋆
∂u
− u⋆
∂r
∂r

z + 2ikr |u |

8

φ + lε ω |u | z. V? CJA
3
,

8 z

3

& #

*

8 , u = cpz = ε ω |u |

9

8
,

*

L?BM

#

8

,

dv
z

U

=

=
u dv

>
lε ω |u | dv
ε ω |u | dv

=

l
.
ω

V? CDA

#/(/#

*

"

#1
#

,>
lε ω |u | dv

dv
z

=

=

z

8 ,

dv

=

ε ωk |u | dv

λ
l
=l .
k


9

*

&

8

#

N

,N ω R

Nl
#
!

U 8

!

V? CDA

l ω
8

exp(ilφ)

0

#
3

0

8

"

*

#

8

9

z

#

exp(ilφ)
8

-

#/(/#
6

";

*

";

*

8

'
,
";

,

8

#

5

3*

ρ

$
"

φ L?JM

>

upl (r, φ, z) ∝ (−1)
×Llp

V? ?GA
*

,

p

:

#

(LG)

:

-

l

"

!
-

,

9

8

U 8

V? EIA


r 2
w(z)

l

exp −

kr
r
exp −i
exp(ilφ)
w (z)
2R(z)

z
2r
exp −i(2p + l + 1) arctan
w (z)
zr

,

V? E@A

#/(/#

*

"

#'

w(z) = w

*
,

5

8

9
5

p
Q

-

zr
z

V? ECA

8

*

z w

2,

2 +

(2p + l + 1) arctan

$ Llp ,

,

z
z

;
,

l

*,

,
*

p=0

+

.

(p + 1) 3

#
";

K

N = 2p + |l| l ,

9


,

V? E?A

R(z) = z 1 +

zr = kw

-

z
zr

1+

(

l=0

8 -

Q

V? @A
";
$ N

8

*
*

l

*

(

V? ?A

z

#/(/#

(
*

*

"

? @>
p A p = 0 #A p = 1

(

>

(
? ?>
l = 1 #A l = 2

(

>

#7

Ap=2

Ap=3

";

z = 0

l = 2

V?I@@A
Al=3

V?I@@A

Al=4

";

z=0

p=0

A

#/(/#

*

.

"
-

#8

";

9"

l=0
$

9

8

!

,#

3
5

l,

#

$

8
#

- *

-

#
";

9
l LEM
"

LGlp

HGmn L?DM . 5

;

#

.

3

9

3
.

,

8

5

(m, n)

p = min(m, n)

HGmn ,

:

8

8

(p, l)

l = |m − n|

N = m+n .

HGmn
LGlp

9
#

.

";

>

√ x
√ y
x +y
Hm
Hn
exp(ikz)
2
2
w (z)
w(z)
w(z)
z
k(x + y )
exp −i(m + n + 1) arctan
× exp −i
, V? EEA
2R(z)
zr

Emn (x, y, z) ∝ exp −

Hn (ξ) ,

K
";

n .
(

V? CA

#/(/#

*

"

(
? C>
d) HG e) HG

(

>

#0

";

";

-

:

";

8

:

#

8

#
#

-

*

K

"*

,#

1
LG± = √ (HG
2
"
";

8

V? EFA

± HG , ) .

#

*

L?DM
9

,

,

#

#

";

8

c) HG

!
9

8
K

O

b) HG

V?I@@A

.

-

> a) HG

f) HG

!

!

3
*

0

#/(/(

*

;

(:
2 +

*9

5*

'

,

0

$

8

8

*

θ =

λ
πw

";

-

LCIM 7

";
8

5

8
$

8

#/(/(
.

"

*

*

;

K

$

$3

:
9
,

L@EM

'

8
,

9

:

*

:
$ !

$
$

l,

*

# $

5

5

9

5

#

# *

8 )

$

*
@DJB

$

*9

8

9

9

)

8

>

V? EGA

E(ρ, φ, z) = E Jl (αρ) exp(ilφ) exp(iβz),

E ,

Jl ,
*

l α

*
9

.

)
k=
8

,

ρ φ

z

*
$

#
#

α +β

"

β

9
8

>

I(ρ, φ, z > 0) = I(ρ, φ).

V? EBA

#/(/(

*

;

(

4

8

*

*

8

*3
7

8 )
*

'

#

9

8
#

7

,

0

)

)

5*

8

)
*

L@F CJM
8

)

9

8 )
*! (

,

9

VC @A

(

(

>

.

8

7

8 ,

,

8
,

,

? E>

8 )

38
8 ,

(l = 0)

!

(

V? FA
9

V?I@@A

)

$

,
#

)

8

0

8
.

8

5
L@GM

l
(

V? FA

.

8

#/,

!

(#

(
? F>
Al=3
Al=4

(

>

A l = 1 #A l = 2

V?I@@A

#/,
6

8 )

!

9

,

*

9

8

#

>

9

8 H

9
8

9
#

l

9

8
exp(ilφ)

#
8

9 :
#

#
8

9

5
N

5

*
$ 3

Q

"$ 3

9
*

#/,

!
7

((

5

8

8

#

5

";
#

)

*
7

l
8

#

8

9

8

(/ "

!

&

!

) *

+
(/

!
8

9

#

3

9

,

8

8"
,

*

'

8

#

*

3*

LBM

:

*3

8

,

8

*

:

:

0

LC@M

L@C C?M

8
,

9

#

8

8
*
8

,

#

#
,

8

CE

8

0

(/# "

!

(/#
6

*

"

"

!

(1

*

,

"

#

-

'

";

$

8

,

,

$

*

"

8

$

8

5

8

9
.#

$
-

(

8 ;
";

l .

,

VC @A

!
-

";

!

LCCM
l#

:

#

l
'

:

*

(

VC ?A
$

(
(
8

(

VC @AV A
C @>
-

>

8

";

V?I@@A

-

";

*
A l = ±1 #A l = ±2

l=1

l=2

9
A l = ±3

*

(/# "

!

(

C ?>

(

>

.

,

*

"

('

8

-

";

Al=1

#A l = 2

V?I@@A

$

3

#

,

,#

6

-

*

,

!

,

";

*

9

# 8
$

8

,# 8

3

,

8

3

3

8
*
-

,

";
f

;
* , $

, $

*
*

9

*
9

,

9

5
,

9

LG
−l

3

λ/2
(

*

9
2f

LG
π '

";

5

,
l,

"
-

9

O

5

*

π/2 '

λ/4

9

LCBM &

2f

*
3

*

5

";

!

9

3

9
";

5

$

VC CA

*

(/( "

!

*

5
-

;

(7

' #

*

";

!

";

.

";

-

,"
";

9
(

(

>

(/(

C C>

*

V?IIJA

"

!

*

;

8 )
#

,

Q

,

3

,

8 )

7

)

3

"

9
8

8

38

V

8

8

:
)
L@FM

9

#

5*

K

A LCDM

$

LCJM
*

,

(/( "

!

*
8

;

)

(8
*,

$

)

7

8

8
#

:

5

$

9

Q

.

R,


ρ
ρ

9

$

φ

!

LCJM>

t(ρ, φ) = exp i 2πνρ cos(φ) + lφ −

VC @A

*

0

exp [i (2πνρ cos(φ))]

0

$

0
$

γ
9

ν =
$

ρ ,
(

π
ρ

VC EA

$

,
P
8

8 )

$
z

,

=

ρ R
λ

γ

P

λ

λ,
K

exp −i ρπ ρ

0

:

8 )
$

ρ

#

.
5

8 )
*

)

L@FM

8 )
l =1

l =4 6

(/( "

(
)

!

*

;

(0

C E>

8
a) l = 1

(

>

)

H( 8

b) l = 4

V?I@@A

*

γ = 0

$

$
(

VC FA

3
Q

,

5

l

8 )

(/( "

!

(

*

;

,:

C F>

(

>

(

γ = 0 a)

l=1

l=4

V?I@@A

VC GA

8 )
$

ρ = 1mm R = 10mm
8

b)

l=1
0

*

,
8

19, 4m

9

> ν = 6000m−

(/,

&

(

(

!

*

$

C G>

>

%

,

8 )

V?I@@A

(/,

&

!

*

$

%
W

5

8

8
8

,

#
7

,

9

#

:
#,

6

#

*

3

,

, $

'

*9

K

*"
9

8

8

,

9

8

3

,

'
!

(

*

O

VC BA

8

Q
"

8
#

:

9 "
5

,

(

VC JA

(/,

&

(

!

*

$

C B>
. *

(
(

>

8 ";
> A l = 1 #A l = 2

C J>

Al=3

8 )
> A l = 1 #A l = 2

. *

>

Al=3

V?I@@A

7
*

,#

V?I@@A

"

(

%

5
5

9

,
#

2

9

9

8

4 &9

2 2

#

8

L?IM
7
8

*,

,
,

,

*

5*

"
5

8

(/,

&

!

*

$

%

,(

T
8 -

";

,

I(x, y) ∝ cos

λ,

8
#

*

(

(
C D>
A l = 1 #A l = 0

>

VC DA

0

";

VC ?A
8 -

";

A l = −1

V?I@@A

O
#

d,

*

8 -

,

VC ?A

,

a,

∆φ(y) ,

.

(

πax ∆φ(y)
+
λd
2

, l = 0 $3

*

(

!

VC DA V A

!

(

VC DA V A

*

!

,
#

,
8

-

,

y
4 &9

";

#

,

2 2

(/,

&

!

*
VC ?A

*

(
(

C @I>
A l = 2 #A l = 3

(

>

$

%

,,

:

l>1

VC @IA
8 -

";

Al=4

V?I@@A

*
5*
#

'

7

,

5

*

*

# $

)

$

) !

#

#

L?@M

*

8

K

V

$

4A

#

8

8

$

7

$

*

:
8

*,
8 -

4 .
";

4

,

(/,

&

(

$

!

*

$

N−



exp (−ilαn ) exp i
n

k = 2π/λ ,
,

*

ka
(xcosαn + ysinαn )
z

9

VC CA

αn = 2πn/N ,

a,

N ,

9

Q

(

:

4

8 VC @@A V A V#A

V A

";

5
(

N =5

l = 0, 1, 2
#

,1

,

IlN

(

%

N
VC CA 7

l

VC @@A V A V A

VA

N =6

*

*

4

8

$

#

9

,

5*

8
(

(

>

C @@>

#

VC @@A

4

V?I@@A

4

(/,

&

l

!

*

p,

l + pN

$

Q

%

N ,

Q

N−

IlN pN



exp [−i(l + pN)αn ] exp i
n

4

ka
(xcosαn + ysinαn )
z

N−

IlN pN ∝
7

exp (−ilαn ) exp(−ipNαn ) exp i
n

VC EA

exp(−ipNαn ) = 1
!

#
4

4

l = 1

8 -

N = 5
4

l = −5, 1, 7

7 (

#

l=9

>

V?I@@A

(

VC @?A

VC @CA

:
8 -

N =6

"

*

C @?>
8 -

"

8

l´ = ... − 11, −5, 7, 13, ...
4

(

IlN = IlN pN

N = 6

8

VC EA

";

8

l = l + pN

(

$

#

;

;

ka
(xcosαn + ysinαn )
z

9
8 -

l

,'

";

9

>

4
N =5
A l = −1 #A l = 4

A

(/1

!

(

,7

C @C>
8 -

";

9

>

l=7

(

>

4
N =6
A l = −5 #A l = 1

A

V?I@@A

R 3

#

*

:

4

8 8

,

";

,

*

9

# P

* *

L?@M
#

(/1

5*

9

8

!

7

5

,
8

-

";

,

$
#

8
3

#

*

$

,

#

!
3

/
5

-

*

,

9

*
(

#,

9

";
8

,

5 "
#

";
,

,

)

*3

,

8

9

"
,
5
8

(/1

!

,8
T

,

K

9

4

#5 P

#
T

4
#
,

9
# P

8
9

7

8

,
5

,
5*

5*

,/ -

!

+ .

) *
/
,/

!

7

5

,

#

#
8
(

$

8

8

,

7

5

8

8

$

7

#

#

*

*

N

#

8

#

,

* 3*

8
#

ED

,/# - )

,/#

! +

1:

-)

! +
8 -

8 ,

";

5

!

z=0

>

r 2
w

U (r, φ, z = 0) =

w ,
,

p=0

5

8 r=

9

l

exp −

r
w

VE @A

exp(ilφ)

x +y ,

φ = tan−

l,

8

y
x

#

τ (x , y )
8

(

$

V

#

E(x, y, z) =

9

VE ?A kx = kz x
*

VE ?A

ky = kz y

kx

*

VE ?A

#

VE CA

U (x , y , z = 0)τ (x , y ) exp [−i (kx x + ky y )] dx dy .

VE CA

!3
8

"
#

z
(

τ (x , y )

"

LCIM>

:
*

, #

";

−i
x +y
U (x , y , z = 0)τ (x , y )
exp ik z +
λz
2z
ik
× exp − (xx + yy ) dx dy
z

ky

7

8 -

,

#

E(kx , ky ) =

A

*

#

U (x, y, z = 0) 7

"
*

*
5

O

8

,

,/# - )

! +

1
VE CA

(

*

#

#

LCEM

(

VE @A
#

0
(
#

3
E @>

(

$

*,

.

(

>

#

*

V?I@@A

'

*

#
$

2

*

VE CA

$

#
VE @A
*

V
#

#

0

3

:

(

A

:

(
l

"

,

$
( VE ?A

,/# - )

(

! +

E ?>

1#

:

(

$
( EC 7
*
$ .
:
A l = 4 .# *

#
9
l = 1 #A l = 2
# $

(

>

Al=3

#
.#
#,

,

-

";
,
A
l+1

V?I@@A

7

l

8

30

:

8#

*

$
Q

38
$ 3

,
#

#

*

,/# - )
(

! +

1(

VE ?AV A/
.

:

(

R#

VE ?A

8

"

$

8

9

#

#

*
#
E C>

9

#
A '#

#

#A - $
8

#
0

(

6

,

9

0

(

#

>

"
#

V?I@@A

&

8

8

#
#

#

0

/
(

.
VE CAV A

3
0

#


φ(y) = sin− 

y
a

+y



,

VE EA

,/# - )

! +

a,

1,
$

/+

0

'8

,

φ(y)

9

2 3y
φ(y) ≈
.
a
8

#

VE FA

0

3"

*
$

9

8


3
U ∼δ x −
a exp
6
x

8


i2 3ly
a

VE GA

#

y

& #

VE GA

VE CA

i2 3ly
a


3
a exp
δ x −
6

E(kx, ky ) =

*
(

exp [−i (kx x + ky y )] dx dy .

9

#

(

*

kx ky
VE JA

,


3a
exp −i
kx ,
6


2 3l
E(kx, ky ) = δ ky −
a

(

,

.

9

,

9

*

Nl
,

*
$

,

A

#

N

VE GA

(
y

!

VE JA

*

90

*
ky V

VE BA

9

"

#,
0

$

"

,/# - )

! +

11

$

#

0

5

(
:

#

#

!
l

3

(
0

VE EA

#

0
$

(

*

,

*

$

0

"

:

*

:

LCFM .
,

(
(
A

VE FA

E E>
$ 9
#

(

>

9
#A
l=3

V?I@@A

A

0

.

:

,/# - )

(

! +

1'

E F>

(

8 -

>

";

l = 3

V?I@@A

7

#
$
#

:
&

8
(

3


2 3l
E(kx , ky ) = δ ky +
a


3a
exp −i
kx ,
6

*

*

#

3
(

VE GA

*

VE DA

8 ky

"

180
9

*

,/# - )

(
(

! +

17

E G> '
$

8

-

,
( EC .
A l = −4

(

>

";
( E?

#
#

3
A l = −1 #A l = −2 A l = −3

:

V?I@@A

8 )
z=0

!

#
8 ,

>

U (ρ, φ, z = 0) = E Jl (αρ) exp(ilφ)

E ,

Jl ,

)

l α,

VE @IA

*

,/# - )

! +

18

*

ρ φ

& #

VE @IA
#

9
VE CA

8

*

"

:

:

8 )

#
8

-

";

#
'

,

(
8

E B>

(

$

8

>

V?I@@A

*

)

,

(

VE BA<

8

:

3
A l = 1 #A l = 2

:

5

$
(

*

Al=3

(
Al=4

EC .

( E?
:

#
#

,/# - )

! +

10

6

#
Q

* :

8

38
* *

8

$

(

3

l

VE BA

Q

*

Q

8
8 )

VE BAV#A

Q

#

l=2

*

*

38

0

8 ,

*

N ,

l = N −1

38

' 3 ,

*

38
,

(

#

*

l =3−1=2
*

l > 11

( VE JA

*

,N =3

,/( 3*+

':

(

E J>
:
(
#
.
:
l = 11 A l = 12
A l = 13 . / 0

(

,/(

>

8

-

";
A l = 10 #A

#

*

V?I@@A

3*+

7

*

8
8

(

$

VE DA

#

,
.

8

,

,/( 3*+

'

(

(

>

E D>

!

8

M

$

M

V?I@@A

6

K

λ = 514.5nm
8 #

10mW
.

8

9

#

$

LCGM . $

9

8

-

";

"

*,
0

5

6

3

#

#
# *

f = 30cm
#

:

:

CCD V (

A

ED@I &

*,
4X Y4"@EIJ

$

1, 75mm
6

0

8

7

4

*
$ '

*
4

<

O

- #W4'Z

,/( 3*+

'#
8

6.1
(

,

VE @IAV A

#
3

E @I>
#
A l = 0 #A l = 1

(

>

,

*

#

8

-

";

Al=2

(

VE @@A

0
VE @@AV A

0

8

#

8

8

7

V?I@@A

.

(

#
#

0
(

# "

#
9

*

(

VE @?A

,
#

8

4
4◦

$

#

*
,

"
7

# 8
#

,/( 3*+

(

'(

E @@> 2
8

(
(

>
E @?> 2
8

(

>

-

8
";

#
A l = 1 #A l = 2

Al=3

V?I@@A

-

V?I@@A

8
";

A l = −2

#
#A l = −3

Al=4

,/,

!

',

6

#

*

8

#
8

#
7

,
#

, 3

*

8

#
$

8

*
#

$

-

(

";

#

VE @IAV#A
l = 1

l = 2

*

,/,

!

7

5

8
8

#

#

*,

.
, #

*
*

8

#

#
* *

*
5*

"

,

*

Q
Q

0

l '

8

,

38

8
*,

#

,

8
,

V A

,

1/

!

4

*

W

8

9
9

5

8
#

*

#

8

9
5

-

8

";

8

8

9

)

:

8

$

5

8

"

-

9

*

";

8

)

*3
'

,

;

8

8

)

8

"

*

,

8
L?IM

)

$
#

,

,
,

L?@M
*

* *"
9

# P

'

&9
* *

)

8

"

$

9

&9

-

,

$

"
#

*

8

l ,

8

l ± pN

7
#

0
GF

3

8

#

.#

*

9

$
*

l

Q

l

,

,

.#

*

$ 3

30

*

l

38

*

"$ 3

30
l

#

3

Q
*,

,

Q

*

l
38

l = N −1

N

38
* *

,
#

#

,

.

Q

8

38

0

*,
#

(
# *

8

*

'

,

*

*

* *

9

5
8

8

$

8
LE@M

GG

*

,

"
#

) 2
L@M

)

C

*

L?M

-

LCM 2

) $

LEM -

Z + 7
Mostre mais